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FLUID-PARTICLE SIMULATIONS WITH FREEFEM++

Aline Lefebvre1

Abstract. We present here a method to simulate the motion of rigid particles in a Newtonian fluid.
The rigid motion is enforced by penalizing the strain tensor on the rigid domain and the time dis-
cretization is performed using the method of characteristics. This leads to a generalized Stokes vari-
ational formulation on the whole domain which can easily be implemented from any Finite Element
Stokes/Navier-Stokes solver. In order to ensure robustness, we describe a strategy to take collisions
into account. To validate the method, simulations implemented with FreeFem++ are presented.

Résumé. Nous présentons ici une méthode pour simuler des écoulements de particules rigides dans un
fluide Newtonien. Le mouvement rigide est imposé grâce à une pénalisation du tenseur des déformations
sur le domaine rigide et la discrétisation en temps est effectuée en utilisant la méthode des car-
actéristiques. Cela nous permet d’obtenir une formulation variationnelle sur le domaine tout entier
de type Stokes généralisé qui peut être programmée facilement à partir de tout solveur éléments finis
pour Stokes/Navier-Stokes. Afin d’assurer la robustesse du code, on décrit une stratégie pour pren-
dre en compte les collisions. Pour valider la méthode, on présente des simulations implémentées sous
FreeFem++.

Introduction

In this article, we consider rigid particles embedded in a Newtonian fluid. Our goal is to describe a method for
their direct numerical simulation that can be straightforwardly implemented on a general Finite Element solver
like FreeFem++ (see [1]) which we use to make numerical experiments. Numerical simulation of particulate
flows raises two main issues. The first one is to impose the rigid motion of the particles and to deal with the fact
that the domain filled with the fluid varies in time. The second one relates to the collisions between particles.

The methods to handle the rigid motion of the particles can be devided in two classes. The first one relies
on a moving mesh following the fluid domain (see [7, 8, 10, 11]). The second approach is the fictitious domain
methods also called domain embedding methods: the idea is to extend a problem defined on a time-dependent,
complex domain (the fluid domain) to a larger one (fixed) called the fictitious domain. Most of these methods
involve a cartesian mesh covering the whole domain (fluid and particles) on which local meshes are moving
(following the particles) and the rigid motion is enforced using a Lagrange multiplier. For more details, see [5]
where the velocity is constrained to be a rigid motion and [14] where the strain tensor is constrained to be zero.
Penalty methods are another class of fictitious domain strategies: in [2] the authors take obstacles into account
and, in [16], particulate flows are simulated using an augmented Lagrangian approach. We propose here to
enforce the rigid motion penalizing the strain tensor. This method, associated to the method of characteristics
for the time discretization leads to a generalized Stokes variational formulation on the whole domain. Therefore,
it can be easily implemented from any finite element Stokes/Navier-Stokes solver. See [9] for an exemple of a
rigid body attached at one of his points.
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Collisions also present severe difficulties in direct numerical simulations and an efficient strategy has to be
implemented to deal with this problem. Note that, “collision” is a somewhat unsuited term since, in the case of
spherical particles in a Newtonian fluid, lubrication forces do not allow particles to get into contact in finite time
(see [6]). However, these particles can approach arbitrarily close and, because of the discretization, numerical
collisions may occur. The first idea is to find a strategy that makes it possible to approximate with accuracy
the lubrication forces: in [8], a method based on local mesh refinements is implemented and gives good results.
However, the number of refinements and the smallness of the time steps that are necessary to avoid collisions
are not known a priori and the method can therefore present a heavy computational cost. Therefore, less time
consuming strategies have been developed to avoid collisions. Some of them consist in adding a short range
repulsive force (see [5,14]). In [11] a minimization algorithm is used to impose a minimal distance between the
particles. In [17], particles are allowed to slightly overlap each other and an elastic repulsive force is applied when
such overlapping occurs. Those methods ensure numerical stability but do not respect the physics. Another
approach is to implement a collision strategy based on inelastic collisions. This idea has been used in [10] to
impose a minimal distance between particles but the method considers separately each couple of neighbouring
particles and therefore can not be used for a large number of particles. We propose here to implement the
scheme described in [12] for inelastic collisions. It allows us to impose a minimal distance between particles
and, since it globally handles all the possible contacts, we can consider mixtures with many particles.

1. Continuous Problem

1.1. Modelling particulate flows

We consider (see Fig. 1) Ω ⊂ R
2 a connected, bounded, regular domain. We denote by (Bi)i=1...N N rigid

inclusions (particles) in Ω (subsets of Ω, disjoint and strongly contained in Ω) and by B the whole rigid domain:
B = ∪N

i=1Bi. We suppose that Ω \ B̄ is filled with a Newtonian fluid governed by the Navier-Stokes equations.
For the sake of simplicity, we will consider spherical particles with homogeneous Dirichlet boundary conditions
on ∂Ω.

xi

Ω

θi

Bi

Figure 1. Notations

We respectively denote by ff and fi the external forces exerted on the fluid and the i-th particle and by ρf

and ρi their respective densities. µ is the viscosity of the fluid. The mass of the i-th particle is denoted by mi.
The position of its center of mass and its angular orientation are respectively denoted by xi and θi. Finally,
Vi = ẋi and ωi = θ̇i are its translational and angular velocities and Ji is the kinematic momentum about its
center of mass: Ji =

∫

Bi

ρi|x − xi|
2. We will also use the following classical notations:

σ = 2µD(u) − pId, D(u) =
∇u + (∇u)T

2
and

Du

Dt
=

∂u

∂t
+ (u · ∇)u.

where σ is the Cauchy stress tensor and Du/Dt is the total derivative of u. Finally, x⊥ denotes (−x2, x1) and
n is the external normal to Ω \ B̄.
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We have to find the velocity u = (u1, u2) and the pressure field p defined in Ω \ B̄ as well as the velocities of
the particles V ∈ R

2N and ω ∈ R
N . At each instant of time t, the fluid obeys the Navier-Stokes equations in

Ω \ B̄ = Ω \ B̄(t) with homogeneous Dirichlet boundary conditions:



















ρf
Du

Dt
− µ△u + ∇p = ff in Ω \ B̄

∇ · u = 0 in Ω \ B̄

u = 0 on ∂Ω.

(1)

The viscosity imposes a no-slip boundary condition on ∂B:

u = Vi + ωi(x − xi)
⊥ on ∂Bi ∀i. (2)

Finally, since the fluid exerts hydrodynamic forces on the particles, Newton’s second law couples these equations:















mi
dVi

dt
=

∫

Bi

fi −
∫

∂Bi

σn ds ∀i

Ji
dωi

dt
=

∫

Bi

(x − xi)
⊥ · fi −

∫

∂Bi

(x − xi)
⊥ · σn ds ∀i.

(3)

1.2. The corresponding variational formulation over a constrained domain

In order to avoid remeshing, we look for a weak formulation involving functions defined on the whole domain
Ω. As it is shown in [9], this can be done by introducing, at each time step, rigid constraints into the functionnal
spaces considered:

K∇ =
{

u ∈ H1
0 (Ω),∇ · u = 0

}

,

KB = {u ∈ H1
0 (Ω), ∀i ∃(Vi, ωi) ∈ R

2 × R;

u = Vi + ωi(x − xi)
⊥ a.e. in Bi}

= {u ∈ H1
0 (Ω),D(u) = 0 a.e. in B}.

K∇ is the space of divergence free functions on Ω and KB is the space of functions on Ω that do not deform
B. Note that, since KB depends on B, it may vary on time. At each instant of time t > 0, the solution to
(1),(2),(3) is extended on the whole domain Ω by a function in KB:

u(t,x) = Vi(t) + ω(t)(x − xi(t))
⊥ in Bi(t) ∀i

and we still denote by u this extension. Let (u, p) be an extended solution of the problem for a certain time
t > 0 and choose ũ ∈ KB. By multiplying the Navier-Stokes equation by ũ, and integrate it by parts over Ω\ B̄,
we obtain:

∫

Ω\B̄

ρf
Du

Dt
· ũ + 2µ

∫

Ω\B̄

D(u) : D(ũ) −

∫

Ω\B̄

p∇ · ũ−

∫

∂(Ω\B̄)

σn · ũ =

∫

Ω\B̄

ff · ũ.

The intergrals over Ω \ B̄ can be extended over Ω using the fact that D(ũ) = 0 and ∇ · ũ = 0 in B. Moreover,
since ũ is in KB, we have:

∀i, ∃Ṽi, ω̃i such that ũ(x) = Ṽi + ω̃i(x − xi)
⊥ in Bi.
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The relation above and the boundary condition on ∂B allow us to cancel the hydrodynamic forces:

∫

Ω\B̄

ρf
Du

Dt
· ũ +

N
∑

i=1

mi
dVi

dt
Ṽi +

N
∑

i=1

Ji
dωi

dt
ω̃i + 2µ

∫

Ω

D(u) : D(ũ) −

∫

Ω

p∇ · ũ =

∫

Ω

f · ũ

where f = ff1Ω\B̄ +
N

∑

i=1

fi1Bi
. Finally, (Vi, ωi) can be considered as auxiliary variables since using

∀i, mi
dVi

dt
Ṽi + Ji

dωi

dt
ω̃i =

∫

Bi

ρi
Du

Dt
· ũ,

we obtain the variational formulation:















∫

Ω

ρ
Du

Dt
· ũ + 2µ

∫

Ω

D(u) : D(ũ) −

∫

Ω

p∇ · ũ =

∫

Ω

f · ũ, ∀ũ ∈ KB,

∫

Ω

q∇ · u = 0, ∀q ∈ L2(Ω),

(4)

where ρ = ρf1Ω\B̄ +

N
∑

i=1

ρi1Bi
.

2. Numerical Strategy: Towards a Classical Weak Formulation

2.1. Time discretization

We denote by ∆t > 0 the time step and for any function f we define fn(x) = f(x, tn) where tn = n∆t.
The time discretization is performed using the method of characteristics in order to obtain a generalized Stokes
variational formulation. If we define the characteristic trajectory that is passing through x at time t as







∂X

∂τ
(x, t, τ) = u(X(x, t, τ), τ),

X(x, t, t) = x,

it is clear that, for any function Φ(t,x) we have

DΦ

Dt
(x, t) =

(

∂Φ

∂t
+ u · ∇Φ

)

(x, t) =
∂

∂t
(Φ(X(x, t, τ), τ)) |τ=t.

Therefore, using the fact that X(x, tn+1, tn+1) = x, we can discretize the total derivative of Φ writing:

(

DΦ

Dt

)n+1

(x) ≈
Φn+1(x) − Φn(Xn(x))

∆t

where Xn(x) is an approximation of X(x, tn+1, tn). For further details about this dicretization see [15].
To apply this method to our problem, we note that since ρ is constant along the characteristics, we have

ρ
Du

Dt
=

D(ρu)

Dt
, and we obtain the following discretized scheme: for each n > 0,
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(i) compute ρn+1 from un and (Bn
i )i:

∀i, Vn
i =

1

πr2
i

∫

Bn

i

un, xn+1
i = xn

i + ∆tVn
i and ρn+1 = ρf1Ω\B̄n+1 +

N
∑

i=1

ρi1Bn+1

i

(5)

(ii) solve the following discretized weak formulation for (4):















































Find un+1 ∈ KBn+1 and pn+1 ∈ L2(Ω) such that:

1

∆t

∫

Ω

ρn+1un+1 · ũ + 2µ

∫

Ω

D(un+1) : D(ũ) −

∫

Ω

pn+1∇ · ũ

=
1

∆t

∫

Ω

(ρnun) ◦ Xn · ũ +

∫

Ω

fn+1 · ũ, ∀ũ ∈ KBn+1,

∫

Ω

q∇ · un+1 = 0, ∀q ∈ L2(Ω),

(6)

where Xn in step (ii) is computed using the characteristics associated to un. Note that, in order not to deform
the rigid domain, we use the real degrees of freedom of the particules to convect ρ in step (i).

2.2. A penalty method to enforce the rigid motion

Our aim is to obtain a variational formulation adapted to a finite element discretization in space. In order
to do so, we use a penalty method to take the constraint into account. This method is presented in [9] and
consists in considering the minimization problem over a constrained domain associated to (6) and relaxing the
constraint by introducing a penalty term in the minimized functional. The added term is the following:

1

ε

∫

Bn+1

D(un+1) : D(un+1),

so that D(un+1)|Bn+1 goes to zero when ε goes to zero and un+1 tends to be a rigid motion in Bn+1.
The variational formulation obtained is:















































Find un+1 ∈ H1
0 (Ω) and pn+1 ∈ L2(Ω) such that:

1

∆t

∫

Ω

ρn+1un+1 · ũ + 2µ

∫

Ω

D(un+1) : D(ũ) +
2

ε

∫

Bn+1

D(un+1) : D(ũ) −

∫

Ω

pn+1∇ · ũ

=
1

∆t

∫

Ω

(ρnun) ◦ Xn · ũ +

∫

Ω

fn+1 · ũ, ∀ũ ∈ H1
0 (Ω),

∫

Ω

q∇ · un+1 = 0, ∀q ∈ L2(Ω).

(7)

We replace in the previous algorithm (6) by (7) which can be solved using any Stokes finite element solver.
Note that, similarly to what is done in [16], the variational formulation (7) shows that the physics behind this
method is to consider the rigid domain as a fluid with infinite viscosity.

3. Taking the Collisions into Account

In [12], B. Maury proposed a numerical scheme to compute inelastic collisions between rigid particles. It
consists in imposing a new constraint to the solution: the velocities of the particles are required to be in a set
of admissible velocities.
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We denote by Dij(x
n) = |xn

i −xn
j |−ri−rj the signed distance between particles i and j and by Gij(x

n) ∈ R
2N

the gradient of this distance:

Gij(x
n) = (. . . , 0, −en

ij , 0, . . . , 0, en
ij , 0, . . . , 0)

i j

where en
ij =

xn
j − xn

i

|xn
j − xn

i |
. At each time step, V ∈ R

2N is an admissible vector if the particles with velocity V do

not overlap at the next time step:

E(xn) =
{

V ∈ R
2N , Dij(x

n + ∆tV) ≥ 0 ∀i < j
}

.

We linearize the constraint and define the set of admissible velocities as the following closed and convex set:

K(xn) =
{

V ∈ R
2N , Dij(x

n) + ∆tGij(x
n) ·V ≥ 0 ∀i < j

}

.

Note that, since the distance between two circular particles is convex with respect to x, we have K(xn) ⊂ E(xn).
For each n > 0, Bn+1 is therefore computed at step (i) of the algorithm and step (ii) is now a variational

problem similar to (7) where we take into account the new constraint:

Vn+1 ∈ K(xn+1) with ∀i, Vn+1
i =

1

πr2
i

∫

Bn+1

i

un+1.

We write this problem as a saddle-point problem and we denote by λn+1
ij ≥ 0 the Lagrange multiplier

associated to the constraint Dij(x
n+1) + ∆tGij(x

n+1) · V ≥ 0. We have to find un+1 ∈ H1
0 (Ω), pn+1 ∈ L2(Ω)

and λ
n+1 ∈ R

N(N−1)/2
+ such that:

1

∆t

∫

Ω

ρn+1un+1 · ũ + 2µ

∫

Ω

D(un+1) : D(ũ) +
2

ε

∫

Bn+1

D(un+1) : D(ũ) −

∫

Ω

pn+1∇ · ũ

=
1

∆t

∫

Ω

(ρnun) ◦ Xn · ũ +

∫

Ω

fn+1 · ũ +
∑

i<j

λn+1
ij ∆tGij(x

n+1) · Ṽ, ∀ũ ∈ H1
0 (Ω),

(8)

∫

Ω

q∇ · un+1 = 0 ∀q ∈ L2(Ω), (9)

Dij(x
n+1) + ∆tGij(x

n+1) · Vn+1 ≥ 0, ∀i < j, (10)

λn+1
ij

(

Dij(x
n+1) + ∆tGij(x

n+1) · Vn+1
)

= 0, ∀i < j (11)

where Vn+1
i =

1

πr2
i

∫

Bn+1

i

un+1 and Ṽi =
1

πr2
i

∫

Bn+1

i

ũ. Equation (11) is a compatibility equation imposing that

a Lagrange multiplier is active (non zero) only if their is a contact between the associated particles. Equation (8)
shows that λn+1

ij is proportional to a force that must be exerted on particles i and j in order to avoid their
contact.

In [12], the saddle-point problem is numerically solved by a Uzawa algorithm on λ
n+1. In our case, since the

particles are embedded in a fluid, each iteration of this algorithm needs to solve a Stokes-like problem which
is very time consuming. In order to avoid this problem, we propose a splitting strategy: for each time step we
first compute ρn+1 with (5), we solve the penalized problem (7), then compute the velocities of the particles
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V̂n+1 associated to un+1 and finally project it onto the set of admissible velocities. This last step consists in
finding Vn+1 solution to:

∣

∣

∣
Vn+1 − V̂n+1

∣

∣

∣

2

= min
V∈K(xn+1)

∣

∣

∣
V − V̂n+1

∣

∣

∣

2

and is performed using a Uzawa algorithm. The obstacle/particle collisions are treated in a similar way.

4. Numerical Tests

4.1. Actual implementation with FreeFem++

We chose to implement this algorithm with the finite element solver FreeFem++ (see [1]). The space dis-
cretization is carried out using the so-called mini-element (see [3]).

To compute (ρnun) ◦ Xn, we use the function convect of FreeFem++. If X is the characteristic trajectory
associated to the finite element velocity field α, Xn(x) is given by FreeFem as x − ∆tαn(x). The convect

function is defined by convect(αn,−∆t,vn) = vn ◦ Xn(x) where v is a vector-valued finite element function.
Consequently, in our case, we can compute

(ρnun) ◦ Xn = convect(un,−∆t, ρnun).

In order to make the system inversible, in the variational formulation we add the term ε0p with ε0 << 1 and
we use the Crout solver to solve the system. Finally, the variational formulation implemented in FreeFem++ is
the following:

problem NStokes([u1,u2,p],[v1,v2,q],solver=Crout)=

//Navier-Stokes formulation

int2d(Th)(rho*u1*v1-convect([uold1,uold2],-dt,rhoold*uold1)*v1

+rho*u2*v2-convect([uold1,uold2],-dt,rhoold*uold2)*v2)

+int2d(Th)(mu*dt*(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)+dx(u2)*dx(v2)

+2*dy(u2)*dy(v2)+dy(u1)*dx(v2)+dx(u2)*dy(v1)))

+int2d(Th)(eps0*p*q - dt*p*dx(v1) - dt*p*dy(v2) + q*dx(u1) + q*dy(u2))

-int2d(Th)(dt*f1*v1 + dt*f2*v2)

//Penalty term

+int2d(Th)(mu*(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)+dx(u2)*dx(v2)

+2*dy(u2)*dy(v2)+dy(u1)*dx(v2)+dx(u2)*dy(v1))*chi/eps)

//Boundary conditions

+on(1,2,3,4,u1=g1,u2=g2);

where Th is the mesh of Ω, (u1,u2,p) are the unknowns, (v1,v2,q) are their respective test functions,
(uold1,uold2) is the velocity field computed at the previous time step, rho and rhoold are respectively
the densities at the current and previous time steps , chi is the characteristic function of B, (f1,f2) is the
source term and (g1,g2) is the boundary condition.

Finally, in order to have at least one mesh element between two neighbouring particles (which is necessary
to compute acuratly the fluid remaining between these particles) we reduce the set of admissible velocities: if h
is the mesh size, we choose

K(xn) =
{

V ∈ R
2N , Dij(x

n) + ∆tGij(x
n) · V ≥ η

}

with η ≈ h.

4.2. Sheared particle

To validate the penalty method, we consider the instantaneous problem of a particle embedded in a Stokes
fluid. The computational domain is a square 1cm wide and a particle of radius 0.1cm is situated at its center.
The right and left walls of the domain impose a shearing motion to the system (see Fig. 2), the viscosity of the
fluid is equal to 1 and there is no external force.
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x

y

L = 1

Ur = 0.5
Ul = −0.5

r = 0.1

0.5

0.5−0.5

−0.5

Figure 2. Sheared particle problem.

The simulations are run for two kinds of meshes: meshes that fit the particle and cartesian meshes (see
Fig. 3). We denote by n the number of elements on each side of the square. Note that, to simulate the motion
of particles, we shall use non fitted meshes in order to avoid remeshing at each time step.

Figure 3. Sheared particle: Fitted (left) and cartesian (right) meshes for n = 30

Since we want to see if the rigid constraint is well taken into account, we plot in Fig. 4 the L2(B) norm of
D(u) against ε for different meshes. We can observe that this norm is of order 10−5 when ε is of order 10−2,
which may allow us to choose ε not too small. We can also note that the rigid constraint is well taken into
account even for relatively small values of n and that the cartesian mesh gives good results even if the fitted
one is slightly better.



128 ESAIM: PROCEEDINGS

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−30

−25

−20

−15

−10

−5

Fitted mesh

n = 80

n = 20

n = 150

log(ε)

lo
g

(
∫

B
|D

(u
)|

2
)

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−30

−25

−20

−15

−10

−5

Cartesian mesh

n = 80

n = 20

n = 150

log(ε)

lo
g

(
∫

B
|D

(u
)|

2
)

Figure 4. Sheared particle: Rigid movement in B, influence of n and ε.

It is known that the angular velocity of the particule converges to
γ̇

2
=

Ur − Ul

2L
= 0.5 as its radius goes to

zero. This value is recovered in our tests and, in Fig. 5 we can observe the streamlines of this rotational motion
for n = 150 and ε = 10−8.

Figure 5. Sheared particle: Streamlines for a cartesian mesh with n = 150 and ε = 10−8.

4.3. Sedimentation of a particle : convergence of the penalty method

In order to better understand the convergence of the penalty method when h = 1/n and ε go to zero, we
consider the instantaneous problem of the sedimentation of a single particle in a box, for which we are able to
numerically compute an accurate reference solution. The particle is embedded in a Stokes fluid. As before (see
Fig. 6), the computational domain is a square 1cm wide, the particle of radius 0.1cm is situated at its center
and the viscosity is equal to 1. We impose homogeneous boundary conditions on the walls. The force acting on
the particle is fB = (0,−500).
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x

y

r = 0.1

0.5

0.5

−0.5

−0.5

fB

Figure 6. Sedimentation of a particule: description of the problem (left) and streamlines for
a cartesian mesh with n = 150 and ε = 10−8 (right).

To study the convergence of the method, we have to compute the solution to this problem (denoted by u).
To do so, we first define (u1, p1) solution to the following problem:























−△u1 + ∇p1 = 0 in Ω \ B̄

∇ · u1 = 0 in Ω \ B̄

u1 = 0 on ∂Ω
u1 = −1 on ∂B

(12)

Symmetry considerations give that u = αu1 and p = αp1 where α is such that the balance of forces is zero:

∫

∂B

σ(u) · n =

∫

B

fB

therefore, α is given by

α =

∫

B
fB

∫

∂B

σ(u1) · n

and finally, an integration by part gives:

α =

∫

B
fB

∫

Ω\B̄

p1∇ · u1 − 2µ

∫

Ω\B̄

D(u1) : D(u1)

.

u can be extended over Ω by u = −α in B. We denote by uref the solution obtained by implementing this
method in FreeFem++ over a boundary fitted fine mesh of Ω \ B̄ (h = 1/150). We are now interested in the
evolution of the following three quantities when ε and h go to zero:

eK = ‖D(uε
h)‖L2(B)

eL2 = ‖uε
h − uref‖L2(Ω)

eH1 = ‖uε
h − uref‖H1(Ω)
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where uε
h denotes the solution to the sedimentation problem given by the FreeFem++ implementation de-

scribed in section 4.1 for a penalty parameter equal to ε and a mesh size equal to h.
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Figure 7. Sedimentation of a particle: convergence of the penalty method.

On the left side of Fig. 7, ε is fixed to 10−8. We plot log(eL2) and log(eH1) versus log(h). The following
convergence rates are observed:

Fitted mesh Cartesian mesh
eL2 2.1577 0.8798
eH1 1.0658 0.5007

Table 1: Convergence rates when h goes to zero

On its right side, uε
h is computed over a fitted mesh and h is fixed to 1/150. We plot log(eK), log(eL2) and

log(eH1) versus log(ε). As expected, a saturation due to the space discretization error is observed for eL2 and
eH1 . We observe the following convergence rates:

Fitted mesh
eK 0.9806
eL2 0.8909
eH1 0.7177

Table 2: Convergence rates when ε goes to zero

To conclude, we can say that the convergence rate in space for a fitted mesh is the one given by the Finite
Element theory. Even though it is divided by 2 for cartesian meshes we must recall that these meshes are
of great interest for non-stationnary problems. This study also confirms that the convergence versus ε is fast
enough to allow us to use not too small ε: for ε lower than 10−2, the space discretization error becomes the
leader term of the error in H1(Ω). However, the convergence rate of eH1 to zero before this saturation effect is
somewhat surprising: for very fine meshes, one would have expected the global error to behave like the error for
the continuous penalized problem which is of order ε (see [9]). A more precise investigation should be undergone
to understand that phenomenon.

4.4. Sedimentation of two particles

To show that our scheme reproduces the behaviour of physical non-stationary systems, we now present the
sedimentation of two neighbouring particles in a closed channel. We consider a channel 2cm wide and 5cm tall:
Ω = [0, 2] × [0, 5]. This channel is filled with a Navier-Stokes fluid and the simulation is started by dropping
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two particles of diameter d = 0.25cm from points (1, 4.5) and (1 + 0.2r, 4) where r is the radius of the particles.
The viscosity of the fluid is µ = 0.01, the densities of the fluid and of the particles are ρf = 1 and ρB = 2.
Fig. 8 shows the configurations obtained at different time steps and reproduces the well-known phenomenon of
drafting, kissing and tumbling (see [4]).

t =0 t =1.25 t =1.575 t =2.05 t =2.25 t =2.5

Figure 8. Sedimentation of two particles: configurations at different time steps for n = 50
and dt = 0.005.

4.5. Sedimentation of 228 particles

In Fig. 9, we plot the results of the sedimentation of 228 particles in a closed box filled with a Navier-Stokes
fluid. The box is a square 2cm wide, the radius of the particles is r = 0.04, the viscosity of the fluid is µ = 0.01
and the densities of the fluid and of the particles are ρf = 1 and ρB = 1.5. The simulation is run for n = 50
and dt = 0.01.

t =0 t =100 t =250 t =500

t =700 t =1000 t =2000 t =8300

Figure 9. Sedimentation of 228 particles: configurations at different time steps.
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Conclusion

We have presented in this paper a method to simulate the motion of rigid particles in Newtonian fluids: the
rigid motion is imposed by penalizing the strain tensor, the time discretization is performed using the method
of characteristics and the collisions are taken into account thanks to a projection method.

This algorithm allows us to use fixed cartesian meshes even for non-stationnary problems and is easy to
implement from any Stokes/Navier-Stokes solver. Moreover, it is straightforward to extend it to the three-
dimensional case provided we have a 3D-Stokes/Navier-Stokes solver.

Whereas the systems usually obtained by using penalty methods are ill conditioned, a numerical investigation
of the convergence of our scheme showed that we can choose ε not too small in order to deal with reasonably
conditioned systems. However, the interactions between parameters h and ε seem to be important and shall be
better understood. In order to do so, we would like to extend to the fluid case the numerical analysis presented
in [13] of the penalty method in the finite element context for the Poisson’s problem.

Acknowledgement: The author would like to thank Pr. Bertrand Maury for helpful suggestions and numerous
discussions about this subject.
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