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We address the problem of computing the hydrodynamic forces and torques among
N solid spherical particles moving with given rotational and translational velocities in
Stokes flow. We consider the original fluid–particle model without introducing new
hypotheses or models. Our method includes the singular lubrication interactions which
may occur when some particles come close to one another. The main new feature is
that short-range interactions are propagated to the whole flow, including accurately
the many-body lubrication interactions. The method builds on a pre-existing fluid
solver and is flexible with respect to the choice of this solver. The error is the error
generated by the fluid solver when computing non-singular flows (i.e. with negligible
short-range interactions). Therefore, only a small number of degrees of freedom are
required and we obtain very accurate simulations within a reasonable computational
cost. Our method is closely related to a method proposed by Sangani & Mo (Phys.
Fluids, vol. 6, 1994, pp. 1653–1662) but, in contrast with the latter, it does not
require parameter tuning. We compare our method with the Stokesian dynamics of
Durlofsky et al. (J. Fluid Mech., vol. 180, 1987, pp. 21–49) and show the higher
accuracy of the former (both by analysis and by numerical experiments).

Key words: boundary integral methods, lubrication theory, Stokesian dynamics

1. Introduction
Macroscopic suspensions are present in various situations arising in industry

(nuclear waste reprocessing, concretes, reinforced plastics), the natural environment
(silting up), biology (blood tests) or sanitary concerns (wastewater treatment). This
large area of applications has given rise to a great amount of research. However,
the properties of the flow of these systems, such as the migration due to shear
flow, the existence and dynamics of aggregates, or the rheo-thickening, are not yet
fully understood. Most experiments are not sufficiently detailed to understand the
mechanisms behind any unusual behaviours and to identify their precise origin, and
there is the need for precise numerical simulations for better understanding of the
rheological behaviour of these systems.
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Such particle suspensions are modelled by rigid particles embedded in a Stokes flow.
This model is also well suited for describing the flow around nano-scale swimmers,
such as sperm cells, swimming bacteria or unicellular algae. Motivation also comes
from recent advances in creating artificial nano-scale swimmers designed to deliver
medication from nano-sized medical devices, see e.g. Douglas, Bachelet & Church
(2012) as an example of the biomedical engineering activity in this area. The present
work is more precisely motivated by the numerical simulation of theoretical artificial
swimmers made of a finite number of balls like those studied in Alouges, DeSimone
& Lefebvre (2008), Lefebvre-Lepot & Merlet (2009) or Alouges et al. (2013).

A large amount of research has been conducted in recent years to develop numerical
tools in order to study the motion of objects in suspension in a Stokes fluid (see
e.g. Patankar et al. 2000 for finite element methods, Cichocki et al. 1994 or Yeo
& Maxey 2010 for multipole decomposition methods and Ladd 1994a,b for lattice-
Boltzmann simulations in the case of Navier–Stokes fluids). The well-known difficulty
in such numerical simulations is to take into account the singular lubrication forces
exerted by the fluid in the gap between close particles. These interactions are both
very large and highly localized, requiring a large number of degrees of freedom for
their capture. To address this problem Durlofsky, Brady & Bossis (1987) make use of
explicit expansions of the lubrication forces between pairs of close isolated particles.
They propose correcting the forces by superposing these singular contributions onto
the already computed total forces and torques exerted on the particles. This leads to an
efficient and stable method. Its main drawback is that it does not include many-body
lubrication interactions: the effect on the other particles of the singular flow generated
by two close particles is not taken into account.

The aim of this work is to develop a method for computing very accurate numerical
solutions without introducing any model or approximation. Our first motivation comes
from the simulations of nano-scale swimmers described in the above references but we
believe that accurate simulations can be helpful for studying fine-scale behaviours of
suspensions such as segregation processes.

Our main idea is to note that the superposition principle is legitimate when it
is applied to the surface force densities. Then, instead of decomposing the total
force into a regular and a singular (lubrication) part, we use the linearity of the
Stokes equations and decompose the initial velocity field into a singular flow, which
contains the short-range lubrication phenomena, and a remainder, which is regular.
The lubrication part is further decomposed, using no approximation, over the set of
pairs of close particles, so that we only have to know how to solve the Stokes flow
around two isolated particles. This flow and the corresponding forces are obtained by
using the same expansions as used in Durlofsky et al. (1987) supplemented by off-line
computations. The remaining part of the flow is regular and is approximated using
a fluid solver. The boundary conditions for this flow are obtained by subtracting
from the initial given velocities, the velocity fields generated by the lubrication
interactions between close pairs in the whole domain. By correcting the velocity field,
we ensure that we simulate the original model, in particular all many-body lubrication
interactions are included. From a numerical point of view, the singular velocity field
will be computed using accurate tabulations created off-line and the remaining regular
part will be approximated on-line with a reasonable number of degrees of freedom.
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Such a decomposition method has already been discussed in Durlofsky et al. (1987,
p. 27):

‘It is possible, however, to analytically include the singular force densities
associated with lubrication directly in the integral equation, and thus reduce
the required number of surface elements [. . . ]. The number of degrees
of freedom with this method is still quite large, however, making large
dynamic simulation costly’.

The improvement of computing power in the last few decades now allows this idea
to be followed.

Two decades ago a numerical method based on a decomposition of the flow into
a lubrication part and a regular part was proposed by Sangani & Mo (1994). In
that paper, the singular part of the velocity field is approximated by using known
asymptotic expansions of the lubrication force density for two isolated particles up
to a fixed order. The force densities are truncated to be non-zero only in a small
region near the gap between the particles (the size of this region is characterized by
an angular parameter θ0). Then the singular velocity field is computed on-line from
this explicit approximation of the force densities. As expected, the remaining regular
part is computed using a small number of degrees of freedom. It is shown in the
article that, in order to obtain the convergence to the initial problem, one has not
only to make the resolution of the remaining regular part more and more precise but
also to send the parameter θ0 to zero (that is using no lubrication correction). The
authors show that for a given precision of the approximation of the regular part, one
can chose empirically the parameter θ0 by running a few test cases.

Our definitions of the singular and regular parts of the flow are different from the
ones of Sangani & Mo (1994). In contrast, the method presented here allows us to
reach any prescribed accuracy by letting both the off-line tabulations and the on-line
computations be more and more precise.

The practical implementation of the singular/regular decomposition method
presented below requires a fluid solver (for computing the regular part) and a set of
tables computed off-line which provide the total forces and torques associated with
the singular part of the flow and a set of tables which allows the velocity field of
this flow to be reconstructed. The method is flexible with respect to the choice of
the fluid solver and we believe that it could be used by any researcher interested in
accurate simulations of dense suspensions. The present work extends to suspensions
of spherical particles with various diameters and to Stokes flows with non-vanishing
field at infinity. Using space truncations (see § 3.4) the method can also be applied
to simulate suspensions in a domain with a boundary or in a periodic domain.

In § 2, we introduce the model, we recall some known expansions of the lubrication
interactions between two nearly touching spherical particles and we re-formulate the
Stokesian dynamics of Durlofsky et al. (1987) and discuss its accuracy. In § 3 we
describe the method and compare it with the Stokesian dynamics. We also discuss
a variant of our method. Section 4 is dedicated to the numerical experiments. In
particular, we show the good behaviour of our method for the computation of the
displacement of the three-sphere swimmer introduced in Najafi & Golestanian (2004).
An appendix A provides some details about the off-line computations.
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2. Computation of hydrodynamic forces in numerical simulation of spherical
particles in a Stokes flow

2.1. Description of the problem
We consider N non-intersecting spherical solid particles immersed in an unbounded
Stokes flow. For simplicity we suppose that the particles have the same radius a= 1.
The fluid is supposed to be at rest at infinity.

We denote by U the particle translational/rotational velocity vector of dimension
6N and F the 6N hydrodynamic force/torque vector. From the linearity of the
problem, we can write the hydrodynamic forces exerted by the fluid on the particles
as

F = R U , (2.1)

where R is the linear, configuration-dependent operator called the resistance operator.
The motion of the particles is governed by the fundamental principle of dynamics:

m
d U

dt
=F +F ext, (2.2)

where m is the generalized mass/moment-of-inertia matrix of the particles (m is a
6N×6N diagonal matrix) and F ext denotes the external forces exerted on the particles.
To fix ideas we suppose here that the particles are inertia-less so that the equilibrium
of forces on the particles can be written as

F +F ext = 0. (2.3)

At each time, the position of the particles and the external forces being given, the
velocity of the particles solves the following linear equation:

R U +F ext = 0. (2.4)

As a consequence, simulating particles in a Stokes flow amounts to approximating
the solution to this linear problem. This can be addressed by calculating explicitly
the resistance matrix R or by using iterative methods which require the computation
of matrix vector products R U at each iteration. In this paper, we focus on the
heart of the problem which is to solve accurately the friction problem: compute the
hydrodynamic forces F = R U when U is given.

2.2. Lubrication forces, case of two particles
It is well known that the main difficulty in designing numerical methods for
approximating (2.4) stems from the short-range lubrication interactions between
close particles. We detail below these interactions in the case of two isolated particles
and we introduce some tools used in what follows.

When some particles are almost in contact, the possible discrepancy between the
velocities on both sides of the thin gaps between them leads to large variations of
the velocity fields. This phenomenon combines with the incompressibility constraint to
generate lubrication forces: large hydrodynamic forces with densities located in small
areas. More precisely, let us consider two isolated spheres B−, B+ with centres on
the x axis separated by some (small) distance d, i.e. r± =±(1+ d/2)ex (see figure 1,
where the force distribution has been numerically computed using a decomposition in
spherical harmonics). We first consider the more singular case with velocities U± =
∓ex: the magnitude of the force densities exerted on ∂B− are displayed on figure 1
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FIGURE 1. A pair of close spheres. (a) Notation; (b) magnitude and (c) normalized
magnitude of the force density near the (almost) contact point on ∂B− for various
distances: d = 2 × 10−2 (◦ ◦ ◦), d = 4 × 10−2 (? ? ?), d = 8 × 10−2 (+ + +) and
d= 16× 10−2 (· · · · · ·).

for different values of d. As d goes to 0, the force densities concentrate on spherical
caps with radii of order of

√
d.

For such large localized densities, if one wants to compute the hydrodynamic
forces exerted on the particles, a large number of degrees of freedom is required in
order to capture the relevant phenomenon. Therefore, simulations based on volume
discretization (such as finite element or finite volume methods) will require very
fine meshes to take these forces into account. For spectral discretizations (such as
multipole methods) this corresponds to a truncation order L satisfying L� 1/

√
d.

The methods in the literature which are designed for capturing the lubrication
interactions while keeping a low number of degrees of freedom are based on
well-known expansions of the lubrication forces with respect to the distance between
close particles, see e.g. Cox (1974), Jeffrey & Onishi (1984) or Kim & Karrila (1991).
Let us recall the first terms of these expansions.

We return to the particles B− and B+ and denote the velocities of the particles by
v±(r) = U±+ω±× (r− r±) on ∂B±. We decompose these velocity fields into a rigid
motion vrig of the solid made of the two particles and the relative motions vrel

− , vrel
+

with respect to this solid, that is

vi = vrig + vrel
i for i=+ or i=−. (2.5)

The relative motion vrel
− , vrel

+ is responsible for the singular lubrication force. More
precisely, we set

vrig(r)= Ū+ ω̄× r with Ū := 1
2(U− +U+), ω̄ := 1

2(ω− +ω+), (2.6)
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vrel
− (r)= Û+ ω̂× (r− r−), vrel

+ (r)=−Û− ω̂× (r− r+) (2.7a)

with

Û := 1
2

[
U− −U+ + ω̄× (r+ − r−)

]
, ω̂ := 1

2 (ω− −ω+) . (2.7b)

The total force F− and torque T− exerted on B− then expand as follows as d goes
to 0:

F−,x =−3πÛxd−1 +O(ln d), F−,i =−2πÛi ln d+O(1) for i= y, z, (2.8a,b)

T− = (0, 2πÛz − (6π/5)ω̂y,−2πÛy − (6π/5)ω̂z) ln d+O(1). (2.9)

Such expansions are used to compute the exact resistance operator R (or a very
accurate approximation) for the two isolated spheres B±:

F± = R±(d)U±. (2.10)

Note that R only depends on the distance d and therefore can be tabulated off-line.
Using a change of coordinates, we can easily deduce from R± the exact resistance

operator Ri,j of any pair of close isolated spheres Bi, Bj:

Fi,j = Ri,j Ui,j. (2.11)

2.3. Including lubrication forces in numerical simulations
To clarify the position of our work in the existing literature, we recall two existing
methods that make use of (2.11) and fit them into a common framework.

Suppose we have at our disposal a numerical fluid–particle solver to compute the
hydrodynamic forces F = R U when the velocities U are given. Let us denote
by RL the corresponding discrete operator, L denoting a parameter which tunes the
accuracy (and size) of the discrete operator (number of mesh elements, truncation
order of the spectral decomposition, . . . , depending on the method). By definition,
the approximation F L of F is

F L = RLU . (2.12)

In what follows we call this method the direct method.
To improve the accuracy of the approximation of the singular lubrication forces

between close particles the main idea is to decompose the forces as

F̃ =F 0 +F lub. (2.13)

Then the direct method is used for F 0 and another method based on (2.11) for F lub.
A first method proposed in the literature consists of assuming that the fluid–particle

solver RL completely misses the short-range interactions. The contribution of
lubrication forces is added using the asymptotic expansions (2.11). If we denote
by F̃ L the total hydrodynamic force computed using this method and by F̃ 0,L the
contribution of the regular part, this yields the decomposition

F̃ L = F̃ 0,L +F lub with F̃ 0,L := RLU , F lub :=
∑
(i,j)∈P

Ri,j Ui,j. (2.14)
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In the last formula the sum ranges over the set P of pairs of particles at distance
less than δ from one another, δ > 0 being a cut-off distance.

The decomposition (2.14) leads to stiff systems and implicit algorithms can be
needed to solve them when particles are very close. This kind of modification was
proposed by Dance & Maxey (2003) for the force-coupling method (splitting scheme)
or in Ladd (2002) for lattice-Boltzmann simulations (semi-implicit scheme).

In the Stokesian dynamics proposed by Durlofsky et al. (1987) and Brady & Bossis
(1988), the approximate resistance matrix RL is obtained by using the multipole
expansions of the force densities and of the velocity fields. In these papers, the series
are truncated to 6 or 11 terms, the latter corresponding to a truncation order L = 1
of the multipole expansion. Later, the method was generalized to arbitrary truncation
orders, see e.g. Cichocki et al. (1994). The strength of Stokesian dynamics lies in
the treatment of the lubrication interactions. In Durlofsky et al. (1987) the authors
include the lubrication forces by using the following modified resistance matrix:

RL
SD = RL +

∑
(i,j)∈P

(
Ri,j − RL

i,j

)
. (2.15)

Here, the term RL
i,j is the poor rank-L approximation of the resistance operator

for an isolated pair computed by the multipole method. In contrast to (2.14) the
approximation of short-range interactions already present in RL is taken into account
by subtracting the terms RL

i,j. The new algorithm is a fully implicit scheme. Using
similar notation as in (2.14), we denote by F̂ L the computed total force and by F̂ 0,L

the contribution of the regular part. Here, the decomposition of hydrodynamic forces
reads

F̂ L = F̂ 0,L +F lub with F̂ 0,L := RLU −
∑
(i,j)∈P

RL
i,jUi,j

and again F lub =
∑
(i,j)∈P

Ri,jUi,j.

 (2.16)

This correction has been largely used for suspension simulations based on multipoles,
see e.g. Brady & Bossis (1988), Ladd (1988) and Cichocki et al. (1994). A modified
method has also been proposed by Cichocki, Ekiel-Jezewska & Wajnryb (1999).

2.4. Pairwise additivity hypothesis and many-body interactions
Stokesian dynamics is very efficient and accurate in many cases of interest. However,
the method assumes an additivity property of the hydrodynamic interactions at
the level of the resistance matrix which does not hold: the interactions between two
particles do depend on the presence and on the position of other particles. Many-body
interactions are already present in the first approximate resistance matrix RL but the
correction step only concerns pairs of close particles and many-body interactions are
not correctly included.

Let us consider a system of three particles B1, B2, B3, the first two being close to
one another and the third at a finite distance as in figure 2. If the particles B1 and B2
have opposite velocities of magnitude V then the velocity field at distance O(r) has a
horizontal component of order of V/r2 resulting in a force of order V/r2 on B3. If the
number of degrees of freedom is not sufficient to capture the short-range lubrication
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FIGURE 2. Many-body interactions.

phenomenon this results in an error of the same order V/r2 in the computation of
the force applied on B3. This error is not corrected by (2.15) since it only affects the
interactions between the close particles B1, B2. To conclude, if the number of degrees
of freedom is not sufficient to capture the lubrication interactions then the error in the
resistance matrix has order of magnitude of

RL
SD − R =O(1/r2). (2.17)

The leading part of the error concerns non-rigid motions of the group formed
by the close particles B1, B2. When considering relatively small non-hydrodynamic
forces, this group behaves as a solid to avoid large lubrication forces and the results
provided by Stokesian dynamics are accurate. On the other hand, Stokesian dynamics
is inadequate when hydrodynamic forces have to balance large non-hydrodynamic
forces as happens when we consider nano-scale swimmers. In these cases, there is a
need for numerical methods which include the multi-body character of the lubrication
forces. We present such a method in the next section.

3. The singular–regular decomposition method
We propose here a precise method to compute the hydrodynamic forces in

fluid–particle simulations. It deals with the original fluid–particle problem without
introducing new hypotheses or models and includes the many-body effects of the
lubrication forces.

3.1. A pairwise additive operator
Let us first recall a few properties about the grand mobility operator M . For this, we
introduce a transmission problem: we consider the Stokes flow generated in the whole
space (no particles), by a given distribution of force densities f located on the surface
of the (fictitious) particles. Then we define u= (u1, . . . , uN) as the restriction of the
velocity field on the surface of these fictitious particles. The grand mobility operator
is defined by the relation

(u1, . . . , uN)=M ( f 1, . . . , f N). (3.1)
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Denoting by σ the stress tensor associated with the flow, the forces densities f i can
be rewritten as jumps of the stress tensor across the boundaries of the particles:

f i = (σext − σint)ni on the boundary of particle i, (3.2)

where ni is the outward unit normal on the boundary of particle i.
In our original problem, we consider the Stokes equations in the fluid domain

(i.e. outside the particles) with force densities σextni exerted on particle i. However,
notice that, in the transmission problem, the total force and torque generated by the
inner force density σintni in (3.2) vanish. As a consequence, as we are only concerned
with total forces and torques, the original problem is equivalent to the transmission
problem.

In the multipole decomposition framework, M is represented as an infinite matrix
which includes all the moments in the expansion. The usual mobility matrix M =R−1

is the restriction of M to the instantaneous rigid motions and to the six first moments
of the forces (total forces and torques).

The advantage of considering this grand mobility operator is that, unlike the
matrices M and R, it is a pairwise additive operator. Indeed, we recall that (see
Pozrikidis 1992 for example) the solution to the transmission problem u can be
written at any point of the fluid as

u(x)=
N∑

i=1

∫
∂Bi

G(x− y) f i(y)dy (3.3)

where G is the Green tensor for the Stokes equation. From this, we easily see that
the operator M is additive.

Using this pairwise additivity, we can include the lubrication forces into the
simulations by summing the solutions for isolated pairs of close particles without
approximation. In practice, the solutions for pairs of close particles are computed
off-line and tabulated.

3.2. Description of the method
We suppose that the translational and rotational velocities u = (u1, . . . , uN) of the
particles are given and we want to compute the corresponding hydrodynamic forces
f = ( f 1, . . . , f N), that is solve (3.1) for f .

We propose to split the velocity fields on the boundary of the particles into a regular
and a singular part:

ui = u0
i + ulub

i on the boundary of particle i. (3.4)

(In general, u0 and ulub will not correspond to instantaneous rigid motions.)
The velocity fields u0 and ulub on the boundary of the particles are associated with

the corresponding surface force densities exerted on the particles by

(u0
1, . . . , u0

N)=M (f 0
1, . . . , f 0

N) and (ulub
1 , . . . , ulub

N )=M (f lub
1 , . . . , f lub

N ). (3.5a,b)

Now, we can treat the two problems independently and use distinct numerical methods
for computing the total forces/torques F 0, F lub resulting from the regular and
singular force densities f 0, f lub.

To continue further in our description, we now assume that we have a fluid solver
at hand, allowing us to compute the hydrodynamic surface density of forces on each
particle when the velocity field on the boundaries of the particles is given (but not
necessarily corresponding to rigid motions). This solver is used for computing the
regular part of the flow (step 2 below). For instance, one can chose a finite element
solver or a solver based on the multipole decomposition.
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Step 1. Computation of the lubrication part of the solution.

Let us first define precisely the singular velocity fields ulub
i . Recall that P is the set

of pairs of close particles with distance between them less than a given δ. The velocity
and pressure fields (ulub, plub) have to contain the short-range lubrication interactions
due to the presence of these pairs of close particles.

As for the computation of the lubrication forces and torques in § 2.2, we decompose
the given translational/rotational velocities ui, uj on particles i and j as the sum of a
global rigid motion urig;(i,j) and relative motions ulub;(i,j)

i and ulub;(i,j)
j . For the latter, we

use the superscript ‘lub’ instead of ‘rel’ to emphasize that these relative motions are
responsible for lubrication forces between the particles; compare to (2.5)–(2.7). We
obtain the decomposition

ui = urig;(i,j) + ulub;(i,j)
i , uj = urig;(i,j) + ulub;(i,j)

j . (3.6a,b)

We have to solve the Stokes problem in the exterior of the two particles Bi, Bj

with prescribed velocities ulub;(i,j)
i and ulub;(i,j)

j on the surfaces of Bi and Bj. This
decomposition is the same as in § 2.2 and thanks to a change of coordinates, the
solution can be easily computed from the reference configuration given in figure 1.
Since this reference configuration only depends on the distance between the two
particles, the solution can be tabulated as precisely as desired off-line by any means
(we propose in the appendix A an implementation that can be used for this off-line
step).

Then from the off-line precise tabulation, we compute the total forces and total
torques F lub,(i,j)

i , F lub,(i,j)
j exerted on particles i and j (as already mentioned, the

corresponding velocity and pressure fields exert no forces on the fictitious other
particles). We also compute and store the restriction of the velocity field on the
surface of each of the other particles ulub;(i,j)

k for k 6= i, j. Notice that for k = i, j this
velocity field is the instantaneous rigid motion ulub;(i,j)

k but for k 6= i, k 6= j it does not
correspond to a rigid motion (unless ulub;(i,j)

i = ulub;(i,j)
j = 0, in which case it vanishes).

This procedure is repeated for each pair of close particles and the resulting force
and velocity densities are superposed on all the particles. This, together with the
pairwise additivity of M provides the lubrication velocities on the surface of each
particle and the corresponding total forces and torques:

ulub
k :=

∑
(i,j)∈P

ulub;(i,j)
k , F lub

k :=
∑

(i,j)∈P;i=k or j=k

F lub,(i,j)
k . (3.7a,b)

Step 2. Computation of the remaining regular part of the solution.

We now have to compute the contribution of the regular velocity field to the total
hydrodynamic forces exerted on the particles. We first obtain the velocity field u0 from
(3.4) and the computations of the previous step:

u0 = u0
i = ui − ulub

i on the boundary of particle i. (3.8)

As previously mentioned, this boundary condition does not have the simple structure
of a rigid motion on the boundary of the particles. On the other hand, the contribution
due to two close particles i and j is uniformly smooth away from the contact point
(middle of the segment joining their centres) and after the corrections the new
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Given boundary
condition Pair (1, 2) Pair (2, 3)

Boundary conditions
after correction

Singular fields

FIGURE 3. Example of decomposition into singular and regular parts.

boundary conditions u0
i do not create large localized force densities, see the example

of figure 3.
Therefore the corresponding hydrodynamic forces can be computed using the fluid

solver with a small number of degrees of freedom. This provides an approximation
of the force densities, defined on the surface of each particle:

(f 0,L
1 , . . . , f 0,L

N ) := RL (u0
1, . . . , u0

N), (3.9)

where RL= (M L)−1 represents our numerical solver. Then for every i, we extract the
total force F 0,L

i by integrating the force (and torque) densities on the surface of Bi.

Step 3. Computation of the hydrodynamic forces.

Putting the two previous steps together, we obtain the following approximation of
the total forces produced by the hydrodynamic forces on the boundary of the particles:

F L
i = F 0,L

i + F lub
i for i= 1, . . . ,N. (3.10)

3.3. Comparison with Stokesian dynamics
Before presenting some numerical tests, let us rewrite the method in the framework of
§ 2.3. First, by construction the lubrication part of the force/torque vector is the same
as in the methods of § 2.3. The difference resides in the computation of the remaining
regular part.

Denoting by Π the projection operator on the first six moments of the multipole
expansion, the remaining part is written as

F 0,L =Π(RLu0)=Π(RLu)−Π(RLulub). (3.11)

The resistance operator associated with the fluid solver is RL = Π(RL)Π and since
the given velocity fields correspond to rigid motions, we have u=Π u=U L=Π U L.
Hence, we can write

F 0,L = RLU L −Π(RLulub). (3.12)

Comparing (2.16) and (3.12), it turns out that the difference between the
singular–regular decomposition method and the Stokesian dynamics correction resides
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in the way the lubrication part of the force computed by the numerical solver
is estimated (last term in both equations). The convergence of both algorithms is
ensured by the fact that these estimated forces converge to the exact one Flub when
L goes to infinity. However, in (3.12), the multi-particle fluid solver is applied to
the velocity lubrication field. Consequently, a pair of close particles contributes to
the estimated lubrication force among all other particles. Of course, this implies
an additional numerical cost but, as shown by the numerical experiments below, it
provides a significant improvement of the precision of the method.

3.4. A variant using space truncations
The most time-consuming part of the on-line computations is the computation of
the velocity field generated by the lubrication part of the flow (3.7a). Indeed, for
every pair of close particles, we have to extract from the tabulation the values of
the lubrication velocity field on the boundary of all the other particles. Since these
operations are independent from one another, the process is highly parallelizable. Still,
if we want to consider a large number of particles, it could be useful to truncate the
lubrication velocity field generated by one pair at some finite distance from the centre
of this pair. We did not need such a method for the numerical simulation presented
below but nevertheless let us indicate its main features. To be more specific, we need
a smooth radial cut-off function χ :R3→[0, 1] such that

χ(r)=
{

1 if r< 1,
0 if r> 2.

(3.13)

For (i, j)∈P , let us denote as ri,j= (ri+ rj)/2 the centre of the pair (Bi,Bj). We now
define the singular part of the flow as

ulub
k (r) :=

∑
(i,j)∈P

χ(r− ri,j)u
lub;(i,j)
k (r). (3.14)

With this definition, only pairs of close particles in the immediate vicinity of Bk
contribute to the above sum. Some further adjustments have to be made. First,
the tabulated values of the forces F

lub,(i,j)
k for k = i and k = j are different from

F lub,(i,j)
k . Next, for k 6= i, k 6= j the contribution F

lub,(i,j)
k does not vanish anymore

and has to be computed on-line from the stress tensor σ lub,(i,j) associated with ulub
k (r).

As a consequence, we need to build a new set of tabulated values allowing the
reconstruction of σ lub,±. Finally, the remaining regular part of the flow solves the
following non-homogeneous Stokes equations in the fluid domain:

div σ 0 =−div
[ ∑
(i,j)∈P

σ lub;(i,j)
]
, div u0 =−div

[ ∑
(i,j)∈P

ulub;(i,j)
]
, (3.15a,b)

with boundary conditions:

u0
k = uk − ulub

k on ∂Bk for k= 1, . . . ,N. (3.16)

Therefore, we now need a fluid solver for the non-homogeneous Stokes equations with
a distributed source term.
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4. Numerical experiments
The fluid solver used to run the numerical tests is based on (truncated) multipole

expansions: force densities and velocity fields are decomposed over the basis of
vectorial spherical harmonics (see e.g. Cichocki et al. 1994). Details about the
off-line computations are given in appendix A.

4.1. Four-particle configuration
In order to assess the accuracy of the singular–regular decomposition method, we
consider four particles whose centres are respectively

r1 = 0, r2 = r1 + (2+ d)e12, r3 = r2 + (2+ d)e23, r4 = r3 + (2+ d)e34, (4.1a−d)

where d= 0.05 is the distance between successive particles and the eij are unit vectors
defined as eij = kij/kij with

k12 = (0, 0, 1), k23 = (0.25, 0.25, 1), k34 = (0.2,−0.1, 0.75). (4.2a−c)

The boundary conditions vi are given by the respective velocities and angular
velocities:

U1 = (1, 3, 2), U2 = (4, 2, 3), U3 = (3, 1, 2), U4 = (−1,−1, 1), (4.3a−d)

ω1= (2, 0,−3), ω2= (−1,−2, 0), ω3= (2, 1,−2), ω4= (−1,−1, 1). (4.4a−d)

This configuration being given, we compute the forces and torques exerted on the
four particles (Fj, Tj)j=1...4, using the three methods previously mentioned: the direct
method (using uniquely the fluid solver), Stokesian dynamics and the singular–regular
decomposition method. For the off-line computations of the latter two, the truncation
degree used in the tabulated multipole expansion is Ltab = 61 (see step 0 described
in appendix A). For each method the relative error is defined as a function of the
truncation order L as

err=
4∑

i=1

(
‖FL

i − FLref
i ‖

‖FLref
i ‖

+ ‖T
L
i − TLref

i ‖
‖TLref

i ‖

)
, (4.5)

where the reference values are obtained by using a large number of harmonics Lref .
The relative error for each method is represented on figure 4.

These results confirm that the new method permits a significant decrease of the
numerical cost needed to reach a given precision. For example, for an error equal
to 10−5, one needs to chose L= 27 (that is 2351 unknowns for each particle) for the
Stokesian dynamics while L = 14 (674 unknowns for each particle) is sufficient for
the new correction. We conclude that accurate reference solutions can be computed
within a reasonable cost.

Remark 1. In most simulations using multipole decomposition with large numbers
of particles, it is usual to take L = 1 or 2. Even in this situation, our method is
better that Stokesian dynamics: the error is divided by a factor which increases as the
minimal distance between particles decreases to 0. As already mentioned, this implies
greater computational effort in order to reconstruct, on-line, the lubrication velocity
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FIGURE 4. (a) The four-ball configuration and (b) the corresponding relative error versus
L for the three methods: direct method (–E –), Stokesian dynamics (–@ –) and singular–
regular decomposition method (–B –).

field from the tabulations. In the simulations presented in this paper, the lubrication
velocity field is represented by multipoles of degree less than 61 (Ltab = 61). In fact,
in the above computations, a tabulation with Ltab = 10 is sufficient for improving the
error by a factor of at least 10 between Stokesian dynamics and the new correction
method. Note that, due to the symmetries of the reference two-particle problem, most
of the coefficients are equal to zero and taking Ltab = 10 only requires tabulating
about 10 coefficients for each type of relative motion. Moreover, these computational
efforts could also be significantly reduced by parallelizing the reconstruction step and
truncating the lubrication velocity field (see § 3.4)

4.2. The three-sphere swimmer
Let us consider the three-sphere swimmer introduced in Najafi & Golestanian (2004).
This swimmer is composed of three identical spheres B1,B2,B3 aligned on the x-axis.
Its shape and position are fully described by the abscissa of the central ball x2 and
the distances l1, l2 between consecutive particles; see figure 5. A stroke is defined
as a periodic deformation of the swimmer which corresponds to a periodic function
s∈ [0, T] 7→ (l1(s), l2(s))∈R2. A stroke being given, we obtain the total displacement
1x= x2(T)− x2(0) of the swimmer by writing the fundamental relation of dynamics.
Neglecting the inertia effects, this amounts to

Ftot :=
3∑

i=1

Fi(l1, l2, u1, u2, u3)= 0, (4.6)

where Fiex is the force exerted by the fluid on ∂Bi. The velocities u1, u2 and u3 of the
three particles can be computed from ẋ2 (unknown) and l̇1, l̇2 (given). Then, solving
(4.6), we obtain ẋ2 as a function of l1, l2 and l̇1, l̇2.

Figure 6 shows the relative error in the total displacement for the square stroke of
figure 5. As previously, for each method, a reference is computed accurately and the
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FIGURE 5. Three-sphere swimmer: (a) notation and (b) stroke.
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FIGURE 6. Three-sphere swimmer: relative error in the displacement of the swimmer
versus L for the direct method (– E –), and the singular-regular decomposition method
(–B –) for three values of d.

plotted error is
err := ∣∣1xL −1xLref

∣∣ /1xLref . (4.7)

We only compare the direct and the singular–regular decomposition methods, as the
Stokesian dynamics correction does not affect Ftot and leads to the same results as the
direct method. The computations are carried out for different values of d. As expected,
the smaller d is, the more useful is the singular–regular decomposition.
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Appendix A. Implementation used for the off-line computations
The fluid–particle solver we used to run the numerical tests presented in § 2.3 is the

multipole method based the decomposition of the forces and velocities in the basis of
vectorial spherical harmonics.

To complete the description of the implementation, we have to describe the off-line
step (step 0) where we compute the tabulations for the lubrication fields ulub and the
corresponding total forces F lub in the reference configuration given in figure 1.
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Step 0. Tabulations of the total forces and velocity fields for the reference
configuration.

Consider the reference configuration described in § 2.2 (see figure 1). In view of
(2.7) we consider the boundary conditions vrel

+ and vrel
− on B+ and B− respectively

which depend on the two vectors Û and ω̂. Let us consider the following four typical
motions (Û, ω̂) (in step 1 of the algorithm the generic motion will be decomposed as
a sum of such basic motions):

(Û1, ω̂1)= (ex, 0), (Û2, ω̂2)= (e, 0), (A 1a,b)

(Û3, ω̂3)= (0, ex), (Û4, ω̂4)= (0, e), (A 2a,b)

where e is a chosen vector perpendicular to ex. We denote by ulub
q the corresponding

velocity fields for q = 1, . . . , 4. Similarly Flub
±,q and Tlub

±,q are the total hydrodynamic
force and torque exerted on B± for q= 1, . . . , 4.

Using the symmetry of the problem with respect to rotations around the x-axis, the
total force and torque have the form

F±,1, T±,1 = (±G1(d)ex, 0), F±,2, T±,2 = (±G2(d)e, S2(d)e), (A 3a,b)

F±,3, T±,3 = (0,±S3(d)ex), F±,4, T±,4 = (0,±S4(d)e), (A 3c,d)

where coefficients {G1,G2, S1, S2, S3, S4} only depend on d.
Next, we assume that in the domain of interest, the velocity fields expand as sums

of multipoles centred at 0:

ulub
q (d, r)=

nmax∑
n=1

Hn
q(d)φ

n(r). (A 4)

Here (φn)n is an explicit basis of solutions of the Stokes equations in R3 \ {0}, nmax is
the number of harmonics taken into account (nmax= 3(Ltab+ 1)2− 1 when considering
harmonics with degree lower than or equal to Ltab) and Hn

q are the coefficients of the
decomposition of the velocity field in this basis.

We need accurate approximations of the 4 nmax functions Hn
q(d) and of the five

functions G1(d), G2(d), S2(d), S3(d), S4(d) for d in the interval (0, δ]. In the numerical
simulations, the cut-off distance is set to δ = 0.5.

Let us start with the latter. From the expansions (2.8), (2.9), we know that for X ∈
{G1,G2, S2, S3, S4}, we have

X(d)= cX,1
1
d
+ cX,2 ln d+ cX,3 + · · · , (A 5)

where the leading-order terms, Xlead.(d)= cX,1(1/d)+ cX,2 ln d, in these expansions are
explicitly known. Our problem boils down to obtaining accurate approximations of the
functions RX(d) := X(d)− Xlead.(d) for d > 0. For this, we first use the fluid–particle
solver to compute accurate approximations of F±(dh) and T±(dh) for dh ranging in
a finite grid: dh ∈ G := {10−3, . . . , 0.5}. Now, in order to estimate RX(d) for any
arbitrary distance 0 < d 6 0.5, we compute the cubic spline interpolation R̃X of the
values RX(dh), dh ∈ G. In order to ensure the good asymptotic behaviour of X as d
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goes to zero, we first estimate cX,3 and add the point (0, cX,3) to the set of interpolation
points. Eventually, for an arbitrary d, the on-line approximation of X(d) will reduce
to the evaluation of X̃(d)= Xlead.(d)+ R̃X(d).

Similarly, for the singular velocity fields, we construct tables of the coefficients
Hn

q(dh), for dh ∈ G. Unlike the functions Gα, Sβ , the coefficients Hn
q are regular at

d= 0 and are well approximated by polynomial functions.
We have chosen to represent the singular velocity fields as the multipole expansion

(A 4) centred at 0. Such an expansion is only valid in the domain Ωd := {r ∈R3; r>
2 + d/2}. Therefore, the present implementation is only valid if, for every pair of
close particles Bi, Bj((i, j) ∈P), all the other particles lie at a distance larger than
2+di,j/2 from the centre ri,j= (ri+ rj)/2. This is not a limitation for the simulations of
the swimmers of Alouges et al. (2008), Lefebvre-Lepot & Merlet (2009) or Alouges
et al. (2013) which motivate the present work. However, it is a severe limitation for
the simulation of generic dense suspensions. In this case, the expansion (A 4) should
be replaced by a sum of two multipole expansions centred at r̄±(d)=±ρ(d)ex,

ulub
q (d, r)=

nmax∑
n=1

[
H−,nq (d)φn(r− r̄−(d))+H+,nq (d)φn(r− r̄+(d))

]
. (A 6)

In order to preserve the regularity property of the coefficients H±,nq with respect to d,
we should choose ρ(d)∝√d, say ρ(d)=√d.
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