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Glossary

Swimming

The ability to advance in a fluid in the absence of external propulsive forces
by performing cyclic shape changes.

Navier-Stokes equations

A system of partial differential equations describing the motion of a simple
viscous incompressible fluid (a newtonian fluid)

ρ(
∂v

∂t
+ (v · ∇)v) = −∇p + η∆v

div v = 0

where v and p are the velocity and the pressure in the fluid, ρ is the fluid
density, and η its viscosity. For simplicity external forces, such as gravity,
have been dropped from the right hand side of the first equation, which
expresses the balance between forces and rate of change of linear momentum.
The second equation constrains the flow to be volume preserving, in view of
incompressibility.

Reynolds number

A dimensionless number arising naturally when writing Navier-Stokes equa-
tions in non-dimensional form. This is done by rescaling position and velocity
with x∗ = x/L and v∗ = v/V , where L and V are characteristic length scale
and velocity associated with the flow. Reynolds number (Re) is defined by

Re =
V Lρ

η
=

V L

ν

where ν = η/ρ is the kinematic viscosity of the fluid, and it quantifies the
relative importance of inertial versus viscous effects in the flow.

Steady Stokes equations

A system of partial differential equations arising as a formal limit of Navier-
Stokes equations when Re → 0 and the rate of change of the data driving
the flow (in the case of interest here, the velocity of the points on the outer
surface of a swimmer) is slow

−η∆v +∇p = 0

div v = 0
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Flows governed by Stokes equations are also called creeping flows.

Microscopic swimmers

Swimmers of size L = 1 µm moving in water (ν ∼ 1 mm2/s at room temper-
ature) at one body length per second give rise to Re ∼ 10−6. By contrast, a
1 m swimmer moving in water at V = 1 m/s gives rise to a Re of the order
106.

Biological swimmers

Bacteria or unicellular organisms are microscopic swimmers, hence their
swimming strategies cannot rely on inertia. The devices used for swimming
include rotating helical flagella, flexible tails traversed by flexural waves,
and flexible cilia covering the outer surface of large cells, executing oar-like
rowing motion, and beating in coordination. Self propulsion is achieved by
shape changes which are typically periodic in time (swimming strokes). A
notable exception is given by the rotating flagella of bacteria, which rely on a
submicron-size rotary motor capable of turning the axis of an helix without
alternating between clockwise and anticlockwise directions.

Swimming microrobots

Prototypes of artificial microswimmers have already been realized, and it is
hoped that they can evolve into working tools in biomedicine. They should
consist of minimally invasive, small scale self propelled devices engineered for
drug delivery, diagnostic, or therapeutic purposes.

1 Definition of the Subject and its Impor-

tance

Swimming, i.e., being able to advance in a fluid in the absence of external
propulsive forces by performing cyclic shape changes, is particularly demand-
ing at low Reynolds numbers (Re). This is the regime of interest for micro-
organisms and micro- or nano-robots, where hydrodynamics is governed by
Stokes equations. Thus, besides the rich mathematics it generates, low Re
propulsion is of great interest in biology (How do microorganism swim? Are
their strokes optimal and, if so, in which sense? Have these optimal swim-
ming strategies been selected by evolutionary pressure?) and biomedicine
(can small scale self propelled devices be engineered for drug delivery, diag-
nostic, or therapeutic purposes?).
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For a microscopic swimmer, moving and changing shape at realistically
low speeds, the effects of inertia are negligible. This is true for both the iner-
tia of the fluid and the inertia of the swimmer. As pointed out by Taylor [1],
this implies that the swimming strategies employed by bacteria and unicellu-
lar organism must be radically different from those adopted by macroscopic
swimmers such as fish or humans. As a consequence, the design of artificial
microswimmers can draw little inspiration from intuition based on our own
daily experience.

Taylor’s observation has deep implications. Based on a profound un-
derstanding of low Re hydrodynamics, and on a plausibility argument on
which actuation mechanisms are physically realizable at small length scales,
Berg postulated the existence of a sub-micron scale rotary motor propelling
bacteria [2]. This was later confirmed by experiment.

2 Introduction

In his seminal paper Life at low Reynolds numbers [3], Purcell uses a very
effective example to illustrate the subtleties involved in microswimming, as
compared to the swimming strategies observable in our mundane experience.
He argues that at low Re, any organism trying to swim adopting the recip-
rocal stroke of a scallop, which moves by opening and closing its valves, is
condemned to the frustrating experience of not having advanced at all at the
end of one cycle.

This observation, which became known as the scallop theorem, started
a stream of research aiming at finding the simplest mechanism by which
cyclic shape changes may lead to effective self propulsion at small length
scales. Purcell’s proposal was made of a chain of three rigid links moving in
a plane; two adjacent links swivel around joints and are free to change the
angle between them. Thus, shape is described by two scalar parameters (the
angles between adjacent links), and one can show that, by changing them
independently, it is possible to swim.

It turns out that the mechanics of swimming of Purcell’s three-link crea-
ture are quite subtle, and a detailed understanding has started to emerge only
recently [4], [5]. In particular, the direction of the average motion of the cen-
ter of mass depends on the geometry of both the swimmer and of the stroke,
and it is hard to predict by simple inspection of the shape of the swimmer
and of the sequence of movements composing the swimming stroke. A rad-
ical simplification is obtained by looking at axisymmetric swimmers which,
when advancing, will do so by moving along the axis of symmetry. Two such
examples are the three-sphere-swimmer in [6], and the push-me-pull-you in
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[7]. In fact, in the axisymmetric case, a simple and complete mathematical
picture of low Re swimming is now available, see [8, 9].

3 The mathematics of swimming

This article focusses, for simplicity, on swimmers having an axisymmetric
shape Ω and swimming along the axis of symmetry, with unit vector ~ı. The
configuration, or state s of the system is described by N+1 scalar parameters:
s = {x(1), . . . , x(N+1)}. Alternatively, s can be specified by a position c (the
coordinate of the center of mass along the symmetry axis) and by N shape
parameters ξ = {ξ(1), . . . , ξ(N)}. Since this change of coordinates is invertible,
the generalized velocities u(i) := ẋ(i) can be represented as linear functions
of the time derivatives of position and shape:

(u(1), . . . , u(N+1)) = A(ξ(1), . . . , ξ(N))(ξ̇(1), . . . , ξ̇(N), ċ)t (1)

where the entries of the N + 1 × N + 1 matrix A are independent of c by
translational invariance.

Swimming describes the ability to change position in the absence of ex-
ternal propulsive forces by executing a cyclic shape change. Since inertia is
being neglected, the total drag force exerted by the fluid on the swimmer
must also vanish. Thus, since all the components of the total force in di-
rections perpendicular to ~ı vanish by symmetry, self-propulsion is expressed
by

0 =

∫

∂Ω

σn ·~ı (2)

where σ is the stress in the fluid surrounding Ω, and n is the outward unit
normal to ∂Ω. The stress σ = η (∇v + (∇v)t) − p Id is obtained by solving
Stokes equation outside Ω with prescribed boundary data v = v̄ on ∂Ω. In
turn, v̄ is the velocity of the points on the boundary ∂Ω of the swimmer,
which moves according to (1).

By linearity of Stokes equations, (2) can be written as

0 =
N+1∑
i=1

ϕ(i)(ξ(1), . . . , ξ(N))u(i) = AtΦ · (ξ̇(1), . . . , ξ̇(N), ċ)t (3)

where Φ = (ϕ(1), . . . , ϕ(N))t, and we have used (1). Notice that the coeffi-
cients ϕ(i) relating drag force to velocities are independent of c because of
translational invariance. The coefficient of ċ in (3) represents the drag force
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corresponding to a rigid translation along the symmetry axis at unit speed,
and it never vanishes. Thus (3) can be solved for ċ and we obtain

ċ =
N∑

i=1

Vi(ξ
(1), . . . , ξ(N))ξ̇(i) = V (ξ) · ξ̇ . (4)

Equation (4) links positional changes to shape changes through shape-
dependent coefficients. These coefficients encode all hydrodynamic interac-
tions between Ω and the surrounding fluid due to shape changes with rates
ξ̇(1), . . . , ξ̇(N).

A stroke is a closed path γ in the space S of admissible shapes given by
[0, T ] 3 t 7→ (ξ(1), . . . ξ(N−1)). Swimming requires that

0 6= ∆c =

∫ T

0

N∑
i=1

Viξ̇
(i)dt (5)

i.e., that the differential form
∑N

i=1 Vidξ(i) is not exact.

4 The scallop theorem proved

Consider a swimmer whose motion is described by a parametrized curve in
two dimensions (N = 1), so that (4) becomes

ċ(t) = V (ξ(t))ξ̇(t) , t ∈ R , (6)

and assume that V ∈ L1(S) is an integrable function in the space of admis-
sible shapes and ξ ∈ W 1,∞(R;S) is a Lipschitz-continuous and T -periodic
function for some T > 0, with values in S.

Figure 1 is a sketch representing concrete examples compatible with these
hypotheses. The axisymmetric case consists of a three-dimensional cone with
axis along~ı and opening angle ξ ∈ [0, 2π] (an axisymmetric octopus). A non-
axisymmetric example is also allowed in this discussion, consisting of two
rigid parts (valves), always maintaining mirror symmetry with respect to a
plane (containing ~ı and perpendicular to it) while swiveling around a joint
contained in the symmetry plane and perpendicular to~ı (a mirror-symmetric
scallop), and swimming parallel to ~ı.

Among the systems that are not compatible with the assumptions above
are those containing helical elements with axis of rotation ~ı, and capable of
rotating around ~ı always in the same direction (call θ the rotation angle).
Indeed, a monotone function t 7→ θ(t) is not periodic.
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Figure 1: A mirror-symmetric scallop or an axisymmetric octopus.

The celebrated “scallop theorem” [3] states that, for a system like the
one depicted in Figure 1, the net displacement of the center of mass at the
end of a periodic stroke will always vanish. This is due to the linearity
of Stokes equation (which leads to symmetry under time reversals), and to
the low dimensionality of the system (a one-dimensional periodic stroke is
necessarily reciprocal). Thus, whatever forward motion is achieved by the
scallop by closing its valves, it will be exactly compensated by a backward
motion upon reopening them. Since the low Re world is unaware of inertia,
it will not help to close the valves quickly and reopen them slowly. A precise
statement and a rigorous short proof of the scallop theorem are given below.

Theorem 1 Consider a swimmer whose motion is described by

ċ(t) = V (ξ(t))ξ̇(t) , t ∈ R , (7)

with V ∈ L1(S). Then for every T -periodic stroke ξ ∈ W 1,∞(R;S) one has

∆c =

∫ T

0

ċ(t)dt = 0 . (8)

Proof. Define the primitive of V by

Ψ(s) =

∫ s

0

V (σ)dσ (9)

so that Ψ′(ξ) = V (ξ). Then, using (7),

∆c =

∫ T

0

V (ξ(t))ξ̇(t)dt =

∫ T

0

d

dt
Ψ(ξ(t))dt

= Ψ(ξ(T ))−Ψ(ξ(0)) = 0

by the T -periodicity of t 7→ ξ(t).
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5 Optimal swimming

A classical notion of swimming efficiency is due to Lighthill [10]. It is defined
as the inverse of the ratio between the average power expended by the swim-
mer during a stroke starting and ending at the shape ξ0 = (ξ

(1)
0 , . . . , ξ

(N)
0 )

and the power that an external force would spend to translate the system
rigidly at the same average speed c̄ = ∆c/T :

Eff−1 =
1
T

∫ T

0

∫
∂Ω

σn · v
6πηLc̄2

=

∫ 1

0

∫
∂Ω

σn · v
6πηL(∆c)2

(10)

where η is the viscosity of the fluid, L = L(ξ0) is the effective radius of the
swimmer, and time has been rescaled to a unit interval to obtain the second
identity. The expression in the denominator in (10) comes from a generalized
version of Stokes formula giving the drag on a sphere of radius L moving at
velocity c̄ as 6πηLc̄.

Let DN : H1/2(∂Ω) → H−1/2(∂Ω) be the Dirichlet to Neumann map of
the outer Stokes problem, i.e., the map such that σn = DNv, where σ is
the stress in the fluid, evaluated on ∂Ω, arising in response to the prescribed
velocity v on ∂Ω, and obtained by solving the Stokes problem outside Ω. The
expended power in (10) can be written as

∫

∂Ω

σn · v =

∫

∂Ω

DN(v) · v . (11)

At a point p ∈ ∂Ω, the velocity v(p) accompanying a change of state of the
swimmer can be written as a linear combination of the u(i)

v(p) =
N+1∑
i=1

Vi(p, ξ)u
(i) (12)

=
N∑

i=1

Wi(p, ξ)ξ̇
(i) . (13)

Indeed, the functions Vi are independent of c by translational invariance, and
(4) has been used to get (13) from the line above.

Substituting (13) in (11), the expended power becomes a quadratic form
in ξ̇ ∫

∂Ω

σn · v = (G(ξ)ξ̇, ξ̇) (14)

where the symmetric and positive definite matrix G(ξ) is given by

Gij(ξ) =

∫

∂Ω

DN(Wi(p, ξ)) · Wj(p, ξ) dp . (15)
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Strokes of maximal efficiency may be defined as those producing a given
displacement ∆c of the center of mass with minimal expended power. Thus,
from (10), maximal efficiency is obtained by minimizing

∫ 1

0

∫

∂Ω

σn · v =

∫ 1

0

(G(ξ)ξ̇, ξ̇) (16)

subject to the constraint

∆c =

∫ 1

0

V (ξ) · ξ̇ (17)

among all closed curves ξ : [0, 1] → S in the set S of admissible shapes such
that ξ(0) = ξ(1) = ξ0.

The Euler-Lagrange equations for this optimization problem are

− ˙
(Gξ̇) +

1

2




(
∂G

∂ξ(1)
ξ̇, ξ̇

)

...(
∂G

∂ξ(N)
ξ̇, ξ̇

)




+ λ
(∇ξV −∇t

ξV
)
ξ̇ = 0 (18)

where ∇ξV is the matrix (∇ξV )ij = ∂Vi/∂ξj, ∇t
ξV is its transpose, and λ is

the Lagrange multiplier associated with the constraint (17).
Given an initial shape ξ0 and an initial position c0, the solutions of (18) are

in fact sub-Riemannian geodesics joining the states parametrized by (ξ0, c0)
and (ξ0, c0 + ∆c) in the space of admissible states X , see [8]. It is well
known, and easy to prove using (18), that along such geodesics (G(γ)γ̇, γ̇) is
constant. This has interesting consequences, because swimming strokes are
often divided into a power phase, where |G(γ)| is large, and a recovery phase,
where |G(γ)| is smaller. Thus, along optimal strokes, the recovery phase is
executed quickly while the power phase is executed slowly.

6 The three-sphere swimmer

For the three-sphere-swimmer of Najafi and Golestanian [6], see Fig. 2, Ω is
the union of three rigid disjoint balls B(i) of radius a, shape is described by
the distances x and y, the space of admissible shapes is S = (2a, +∞)2, and
the kinematic relation (1) takes the form

u(1) = ċ− 1

3
(4ẋ− ẏ)

u(2) = ċ− 1

3
(ẋ− ẏ) (19)

9



&%

'$B(1)

&%

'$B(2)

&%

'$B(3)

-¾ ¾ -

¡¡µa

x y

-

x(1) x(2) x(3)

c -

~ı

Figure 2: Swimmer’s geometry and notation.

u(3) = ċ +
1

3
(4ẏ − ẋ) .

Consider, for definiteness, a system with a = 0.05 mm, swimming in water.
Calling f (i) the total propulsive force on ball B(i), the following relation
among forces and ball velocities holds




f (1)

f (2)

f (3)


 = R(x, y)




u(1)

u(2)

u(3)


 (20)

where the symmetric and positive definite matrix R is known as the resis-
tance matrix. From this last equation, using also (19), the condition for
self-propulsion f (1) + f (2) + f (3) = 0 is equivalent to

ċ = Vx(x, y)ẋ + Vy(x, y)ẏ, (21)

where

Vx(x, y) =
Rec · (ec × ey)

Rec · (ex × ey)
(22)

Vy(x, y) = −Rec · (ec × ex)

Rec · (ex × ey)
(23)

and, moreover, ex = (−1, 1, 0)t, ey = (0,−1, 1)t, ec = (1/3, 1/3, 1/3)t.
Given a stroke γ = ∂ω in the space of admissible shapes, condition (5)

for swimming reads

0 6= ∆c =

∫ T

0

(Vxẋ + Vyẏ) dt =

∫

ω

curl V (x, y)dxdy (24)

which is guaranteed, in particular, if curl V is bounded away from zero.
Strokes of maximal efficiency for a given initial shape (x0, y0) and given
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displacement ∆c are obtained by solving equation (18). For N = 2, this
becomes

− ˙
(Gγ̇) +

1

2

(
(∂xGγ̇, γ̇)
(∂yGγ̇, γ̇)

)
+ λcurl V (γ)γ̇⊥ = 0 (25)

where ∂xG and ∂yG stand for the x and y derivatives of the 2 × 2 matrix
G(x, y).

It is important to observe that, for the three-sphere swimmer, all hydro-
dynamic interactions are encoded in the shape dependent functions V (x, y)
and G(x, y). These can be found by solving a two-parameter family of outer
Stokes problems, where the parameters are the distances x and y between
the three spheres. In [8], this has been done numerically via the finite ele-
ment method: a representative example of an optimal stroke, compared to
two more naive proposals, is shown in Figure 3.

Optimal stroke Small square stroke Large square stroke
0.229 0.278 0.914

Table 1: Energy consumption (J) for the three strokes of Figure 6 inducing
the same displacement ∆c = 0.01 mm in T = 1 s.

7 Future Directions

The techniques discussed in this article provide a head start for the math-
ematical modeling of microscopic swimmers, and for the quantitative opti-
mization of their strokes. A complete theory for axisymmetric swimmers is
already available, see [9], and further generalizations to arbitrary shapes are
relatively straightforward. The combination of numerical simulations with
the use of tools from sub–Riemannian geometry proposed here may prove
extremely valuable for both the question of adjusting the stroke to global op-
timality criteria, and of optimizing the stroke of complex swimmers. Useful
inspiration can come from the sizable literature on the related field dealing
with control of swimmers in a perfect fluid.
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